Affiliation:
1. Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049-Madrid, Spain
Abstract
The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献