Affiliation:
1. Department of Mathematics, Statistics & Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
2. Department of Mathematics & Statistics, Florida International University, Miami, FL 33199, USA
Abstract
We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献