MULTIBUMP SOLUTIONS OF NONLINEAR PERIODIC SCHRÖDINGER EQUATIONS IN A DEGENERATE SETTING

Author:

ACKERMANN NILS1,WETH TOBIAS1

Affiliation:

1. Mathematisches Institut der Universität Gießen, Arndtstr. 2, 35390 Gießen, Germany

Abstract

We prove the existence of infinitely many geometrically distinct two bump solutions of periodic superlinear Schrödinger equations of the type -Δu + V(x)u = f(x,u), where x ∈ ℝN and lim |x| → ∞u(x) = 0. The solutions we construct change sign and have exactly two nodal domains. The usual multibump constructions for these equations rely on strong non-degeneracy assumptions. We present a new approach that only requires a weak splitting condition. In the second part of the paper we exhibit classes of potentials V for which this splitting condition holds.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Self-trapping of an electromagnetic field and bifurcation from the essential spectrum

2. Applied Mathematical Sciences;Sulem C.,1999

3. The Shadowing Lemma for Elliptic PDE

4. P. H. Rabinowitz, Nonlinear Analysis (Quaderni, Scuola Normale Superiore, Pisa, 1991) pp. 307–317.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential decay of the solutions to nonlinear Schrödinger systems;Calculus of Variations and Partial Differential Equations;2023-05-27

2. A Class of Kirchhoff-Type Problems Involving the Concave–Convex Nonlinearities and Steep Potential Well;Bulletin of the Malaysian Mathematical Sciences Society;2022-10-17

3. Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach;Calculus of Variations and Partial Differential Equations;2022-02-07

4. A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity;Annali di Matematica Pura ed Applicata (1923 -);2021-09-16

5. Low energy nodal solutions to the Yamabe equation;Journal of Differential Equations;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3