Allee optimal control of a system in ecology

Author:

Trélat Emmanuel1,Zhu Jiamin2,Zuazua Enrique3456

Affiliation:

1. Sorbonne Université, Université Paris-Diderot SPC, CNRS, Inria, Laboratoire Jacques-Louis Lions, Équipe CAGE, F-75005 Paris, France

2. Institut de Mathématiques de Toulouse, Université Paul Sabatier, UMR5219, F-31062 Toulouse, France

3. DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain

4. Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

5. Facultad de Ingeniería, Universidad de Deusto, Avda. Universidades, 24, 48007 Bilbao, Basque Country, Spain

6. Sorbonne Université, Université Paris-Diderot SPC, CNRS, Laboratoire Jacques-Louis Lions, F-75005 Paris, France

Abstract

The Allee threshold of an ecological system distinguishes the sign of population growth either towards extinction or to carrying capacity. In practice, human interventions can tune the Allee threshold for instance thanks to the sterile male technique and the mating disruption. In this paper, we address various control problems for a system described by a diffusion–reaction equation regulating the Allee threshold, viewed as a real parameter determining the unstable equilibrium of the bistable nonlinear reaction term. We prove that this system is the mean field limit of an interacting system of particles in which the individual behaviour is driven by stochastic laws. Numerical simulations of the stochastic process show that the propagation of population is governed by travelling wave solutions of the macroscopic reaction–diffusion system, which model the fact that solutions, in bounded space domains, reach asymptotically an equilibrium configuration.An optimal control problem for the macroscopic model is then introduced with the objective of steering the system to a target travelling wave. Using well-known analytical results and stability properties of travelling waves, we show that well-chosen piecewise constant controls allow to reach the target approximately in sufficiently long time. We then develop a direct computational method and show its efficiency for computing such controls in various numerical simulations. Finally, we show the effectiveness of the obtained macroscopic optimal controls in the microscopic system of interacting particles and we discuss their advantage when addressing situations that are out of reach for the analytical methods. We conclude the paper with some open problems and directions for future research.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlled traveling profiles for models of invasive biological species;ESAIM: Control, Optimisation and Calculus of Variations;2024

2. Analysis of the Rolling Carpet Strategy to Eradicate an Invasive Species;SIAM Journal on Mathematical Analysis;2023-02-02

3. A note on control of one-dimensional heterogeneous reaction-diffusion equations;Evolution Equations and Control Theory;2023

4. A control strategy for the sterile insect technique using exponentially decreasing releases to avoid the hair-trigger effect;Mathematical Modelling of Natural Phenomena;2023

5. Constrained control of gene-flow models;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2022-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3