Step-by-step solving virtual element schemes based on scalar auxiliary variable with relaxation for Allen–Cahn-type gradient flows

Author:

Chen Yanping1ORCID,Gu Qiling2ORCID,Huang Jian2ORCID

Affiliation:

1. School of Science, Nanjing University of Post and Telecommunications, Nanjing 210046, P. R. China

2. Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, P. R. China

Abstract

In this paper, we consider integrating the scalar auxiliary variable time discretization with the virtual element method spatial discretization to obtain energy-stable schemes for Allen–Cahn-type gradient flow problems. In order to optimize CPU time during calculations, we propose two step-by-step solving SAV algorithms by introducing a novel auxiliary variable to replace the original one. Then, linear, decoupled, and unconditionally energy-stable numerical schemes are constructed. However, due to truncation errors, the auxiliary variable is not equivalent to the continuous case in the original definition. Therefore, we propose a novel relaxation technique to preserve the original energy dissipation rule. It not only retains all the advantages of the above algorithms but also improves accuracy and consistency. Finally, a series of numerical experiments are conducted to demonstrate the effectiveness of our method.

Funder

State Key Program of National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3