A logistic-harvest model with allee effect under multiplicative noise

Author:

Tesfay Almaz12,Tesfay Daniel1,Brannan James3,Duan Jinqiao4

Affiliation:

1. School of Mathematics and Statistics and Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

2. Department of Mathematics, Mekelle University, Mekelle, P.O. Box 231, Ethiopia

3. Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634, USA

4. Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

Abstract

This work is devoted to the study of a stochastic logistic growth model with and without the Allee effect. Such a model describes the evolution of a population under environmental stochastic fluctuations and is in the form of a stochastic differential equation driven by multiplicative Gaussian noise. With the help of the associated Fokker–Planck equation, we analyze the population extinction probability and the probability of reaching a large population size before reaching a small one. We further study the impact of the harvest rate, noise intensity and the Allee effect on population evolution. The analysis and numerical experiments show that if the noise intensity and harvest rate are small, the population grows exponentially, and upon reaching the carrying capacity, the population size fluctuates around it. In the stochastic logistic-harvest model without the Allee effect, when noise intensity becomes small (or goes to zero), the stationary probability density becomes more acute and its maximum point approaches one. However, for large noise intensity and harvest rate, the population size fluctuates wildly and does not grow exponentially to the carrying capacity. So as far as biological meanings are concerned, we must catch at small values of noise intensity and harvest rate. Finally, we discuss the biological implications of our results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3