Bifurcation Analysis of an Ecological System with State-Dependent Feedback Control and Periodic Forcing

Author:

He Mengqi1,Tang Sanyi1ORCID,Tang Guangyao2,Xiang Changcheng2

Affiliation:

1. School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710062, P. R. China

2. School of Mathematics and Statistics, Hubei Minzu University, Enshi, Hubei 445000, P. R. China

Abstract

By assuming a periodic variation in the intrinsic growth rate of the prey, a nonlinear ecological system with periodic forcing and state-dependent feedback control is proposed. The main purpose of the present paper is to study the dynamical behavior generated by periodic forcing and nonlinear impulse perturbations and their effects on pest control. To do this, we first investigate the existence and stability of the boundary periodic solution, and then we employ the numerical bifurcation techniques, mainly including one-dimensional and two-dimensional parameter bifurcation analyses, to reveal that the system exhibits rich and complex dynamic behaviors. Especially, period-adding bifurcation with chaos is found in the two-parameter bifurcation plane. Moreover, we find the periodic structure similar to Arnold tongues, and they are arranged according to the sequence of a Farey tree. In addition, one-dimensional bifurcation diagrams reveal the existence of order-[Formula: see text] periodic, and chaotic solutions, multiple coexisting attractors, period-doubling bifurcations, period-halving bifurcations, and so on. Finally, the effects of the initial population density of pests and natural enemies on the pulse frequency and the biological significance related to the numerical results are studied and discussed.

Funder

National Natural Science Fundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3