Parametric Frequency Analysis of Mathieu–Duffing Equation

Author:

Azimi Mohsen1ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA

Abstract

The classic linear Mathieu equation is one of the archetypical differential equations which has been studied frequently by employing different analytical and numerical methods. The Mathieu equation with cubic nonlinear term, also known as Mathieu–Duffing equation, is one of the many extensions of the classic Mathieu equation. Nonlinear characteristics of such equation have been investigated in many papers. Specifically, the method of multiple scale has been used to demonstrate the pitchfork bifurcation associated with stability change around the first unstable tongue and Lie transform has been used to demonstrate the subharmonic bifurcation for relatively small values of the undamped natural frequency. In these works, the resulting bifurcation diagram is represented in the parameter space of the undamped natural frequency where a constant value is allocated to the parametric frequency. Alternatively, this paper demonstrates how the Poincaré–Lindstedt method can be used to formulate pitchfork bifurcation around the first unstable tongue. Further, it is shown how higher order terms can be included in the perturbation analysis to formulate pitchfork bifurcation around the second tongue, and also subharmonic bifurcations for relatively high values of parametric frequency. This approach enables us to demonstrate the resulting global bifurcation diagram in the parameter space of parametric frequency, which is beneficial in the bifurcation analysis of systems with constant undamped natural frequency, when the frequency of the parametric force can vary. Finally, the analytical approximations are verified by employing the numerical integration along with Poincaré map and phase portraits.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3