Bipolar Pulse-Induced Coexisting Firing Patterns in Two-Dimensional Hindmarsh–Rose Neuron Model

Author:

Bao Han1,Hu Aihuang2,Liu Wenbo1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

2. School of Information Science and Engineering, Changzhou University, Changzhou 213164, P. R. China

Abstract

In this paper, a bipolar pulse (BP) current is taken to mimic a periodic stimulus effect on the membrane potential in the axon of a neuron. By introducing the BP current to substitute the externally applied constant current, a BP-forced two-dimensional Hindmarsh–Rose (HR) neuron model is proposed. Based on the proposed neuron model, the BP-switched equilibrium point and its stability evolution with the periodic variation in time are explored. Furthermore, coexisting asymmetric attractors (or coexisting firing patterns) with bistability are revealed by phase plane orbits, time sequences, and attraction basins, as well as the BP-induced coexisting asymmetric attractors’ behaviors are then elaborated through bifurcation analysis. The research results exhibit that, with the increase of the time, the stabilities of the neuron model are continually switched between an unstable node-focus and a stable point, resulting in the coexisting behaviors of numerous asymmetric attractors under the specified initials. Consequently, the newly introduced BP current stimulus, instead of the original constant current stimulus, allows the two-dimensional HR neuron model to possess complex dynamical behaviors for the membrane potential. Additionally, a hardware breadboard is fabricated and circuit experiments are carried out to validate the numerical simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3