Near-Integrability and Recurrence in FPU-Cells

Author:

Verhulst Ferdinand1

Affiliation:

1. Mathematisch Instituut, P. O. Box 80.010, 3508TA Utrecht, Netherlands

Abstract

In a neighborhood of stable equilibrium, we consider the dynamics for at least three degrees-of-freedom (dof) Hamiltonian systems (2 dof systems are not ergodic in this case). A complication is that the recurrence properties depend strongly on the resonances of the corresponding linearized system and on quasi-trapping. In contrast to the classical FPU-chain, the inhomogeneous FPU-chain shows nearly all the principal resonances. Using this fact, we construct a periodic FPU-chain of low dimension, called a FPU-cell. Such a cell can be used as a building block for a chain of FPU-cells, called a cell-chain. Recurrence phenomena depend strongly on the physical assumptions producing specific Hamiltonians; we demonstrate this for the [Formula: see text] resonance, both general and for the FPU case; this resonance shows dynamics on different timescales. In addition we will study the relations and recurrence differences between several FPU-cells and a few cell-chains in the case of the classical near-integrable FPU-cell and of chaotic cells in [Formula: see text] resonance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian Resonances;Surveys and Tutorials in the Applied Mathematical Sciences;2023

2. Variations on the Fermi-Pasta-Ulam Chain, a Survey;13th Chaotic Modeling and Simulation International Conference;2021

3. Henri Poincaré's neglected ideas;Discrete & Continuous Dynamical Systems - S;2020

4. Recurrence and Resonance in the Cubic Klein-Gordon Equation;Acta Applicandae Mathematicae;2019-01-23

5. Interaction of Lower and Higher Order Hamiltonian Resonances;International Journal of Bifurcation and Chaos;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3