ON REYNOLDS' DILATANCY AND SHEAR BAND EVOLUTION: A NEW PERSPECTIVE

Author:

WALKER DAVID M.1,VO KEVIN1,TORDESILLAS ANTOINETTE1

Affiliation:

1. Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia

Abstract

Dense granular media exhibit rich phenomenology when subject to imposed stresses and strains. This is a result of the many degrees of freedom present in an assembly of grains and the nonlinear interactions between the grains. Their complex behavior include the self-organization of load-bearing columnar structures known as force chains across a wide range of spatial scales. Behavior akin to phase transitions from a strong solid-like to a weak liquid-like response can also be observed with shear bands, i.e. regions where force chains collectively buckle, being the signature microstructure in this transition from the stable to the failure regime. An inherent aspect of shear bands and dense granular failure is the phenomenon of dilatancy, i.e. expansion in volume, when the material is subjected to a combined compression and shear. To understand the origins of dilatancy, it is useful to consider the granular material as a mixture of two components: grains and the interstitial material filling the voids or pores between the grains. The grains within a dense granular material respond to applied loads by rearranging to create local zones which contract and dilate. Extant studies of this mechanical response are typically focused on the solid skeleton, in particular, the topology of the network representing the physical contacts between grains. Here, we propose an alternative perspective which is to consider network representations of the evolving anisotropic pore space. We demonstrate how to construct pore space networks that express the local size of voids about a grain through network edge weights. We investigate sectors of the loading history when a percolating giant component of the pore space network exists. By defining two weight functions for edge properties, we: (i) discover via a recurrence plot-based analysis a temporal time scale for jamming–unjamming (contractant-dilatant) dynamics in shear bands; and show that (ii) the formation of a persistent shear band in response to the deformation places grains in a configuration predisposed to the efficient transport of interstitial material as evidenced by the location of percolating shortest path routes through the most dilatant sites. A proper understanding of the micromechanics of pore evolution with respect to shear bands and dilatancy is key to a range of applications such as modeling ground water flow, dewatering systems, carbon capture and sequestration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3