Symmetries of Quotient Networks for Doubly Periodic Patterns on the Square Lattice

Author:

Stewart Ian1,Gökaydin Dinis1

Affiliation:

1. Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

Abstract

Patterns of synchrony in networks of coupled dynamical systems can be represented as colorings of the nodes, in which nodes of the same color are synchronous. Balanced colorings, where nodes of the same color have color-isomorphic input sets, correspond to dynamically invariant subspaces, which can have a significant effect on the typical bifurcations of network dynamical systems. Orbit colorings for subgroups of the automorphism (symmetry) group of the network are always balanced, although the converse is false. We compute the automorphism groups of all doubly periodic quotient networks of the square lattice with nearest-neighbor coupling, and classify the “exotic” cases where this quotient network has extra automorphisms not induced by automorphisms of the square lattice. These comprise five isolated exceptions and two infinite families with wreath product symmetry. We also comment briefly on implications for bifurcations to doubly periodic patterns in square lattice models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Groupoids, Fibrations, and Balanced Colorings of Networks;International Journal of Bifurcation and Chaos;2024-06-06

2. Symmetry and Network Topology in Neuronal Circuits: Complicity of Form and Function;International Journal of Bifurcation and Chaos;2022-11

3. Balanced Colorings and Bifurcations in Rivalry and Opinion Networks;International Journal of Bifurcation and Chaos;2021-06-15

4. Hidden Symmetries, Coupled Networks and Equivariant Degrees;International Journal of Bifurcation and Chaos;2021-04

5. Decoupled synchronized states in networks of linearly coupled limit cycle oscillators;Physical Review Research;2020-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3