Period-Bubbling Transition to Chaos in Thermo-Viscoelastic Fluid Systems

Author:

Layek G. C.1ORCID,Pati N. C.1

Affiliation:

1. Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India

Abstract

We report a 6D nonlinear dynamical system for thermo-viscoelastic fluid by selecting higher modes of infinite Fourier series of flow quantities. This nonlinear system demonstrates overstable convective motion and some organized structures such as period-bubbling and Arnold tongue-like structures. Studies reveal that the stability of the conduction state does not alter for the new 6D system in comparison with the lowest order 4D system of Khayat [1995] . However, the stabilities of the convective state have some differences. The onset of unsteady convection in the 6D system is delayed for weak elasticity of the fluid. There exists a critical range of fluid elasticity where the 4D system exhibits subcritical Hopf bifurcation while the 6D system shows supercritical Hopf bifurcation, which ensures the increase of the domain of stability. In this range, catastrophic route to chaos occurs in the 4D system, whereas the 6D system exhibits intermittent onset of chaos. Comparing the two-parameter dependent dynamics for the two systems, the chaotic zones enclosed by periodic regions are suppressed in the 6D system, so the flow behaviors become more predictable. Owing to interacting thermal buoyancy and fluid elasticity, both the models exhibit period-bubbling transition to chaos, but the period-bubbling cascade in the 6D model occurs at lower Rayleigh number than the 4D model. The convergence rate of the period-bubbling process slows down compared to usual period-doubling and approaches the square root of the Feigenbaum constant asymptotically.

Funder

CSIR

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlling the Period-Bubbling Route to Chaos;International Journal of Bifurcation and Chaos;2024-07-30

2. Periodicity and chaos of thermal convective flows in annular cylindrical domains using the method of isolation by spectral expansions;Chaos, Solitons & Fractals;2024-02

3. Theory of Bifurcations;University Texts in the Mathematical Sciences;2024

4. Stability Theory;University Texts in the Mathematical Sciences;2024

5. Chaos;University Texts in the Mathematical Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3