Low-Index Equilibrium and Multiple Period-Doubling Cascades to Chaos of Atmospheric Flow in Beta-Plane Channel

Author:

Chen Zhi-Min12

Affiliation:

1. School of Mathematics and Statistics, Shenzhen University, Shenzhen 518052, P. R. China

2. Ship Science, University of Southampton, Southampton SO17 1BJ, UK

Abstract

The nonlinear dynamical behavior of an atmospheric circulation in a beta-plane channel is examined on a five-spectral mode model, truncated from the Charney and DeVore quasi-geostrophic equation. Bifurcation and chaos are observed when subjected to a topographic driving disturbance and a thermally driving zonal source. An equilibrium state undergoes supercritical Hopf bifurcation and becomes a stable periodic state with respect to the magnitude of the thermally driving source, whereas the periodic state undergoes a subcritical Hopf bifurcation and transforms into a low-index equilibrium state with respect to the increasing topographic driving disturbance. The stable periodic state further develops into a pair of stable periodic states when increasing the thermally driving source. The first one with the period of 4.3 days exhibits an oscillation of strong and weak zonal flow patterns, whereas the second one with the period of 6.8 days demonstrates a fluctuation amongst weak zonal disturbance flow patterns. Moreover, the two periodic states transform respectively into chaos through separate period-doubling cascades with the further development of the thermally driving source.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics;Chaos: An Interdisciplinary Journal of Nonlinear Science;2017-03

2. Equilibrium states of the Charney-DeVore quasi-geostrophic equation in mid-latitude atmosphere;Journal of Mathematical Analysis and Applications;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3