Affiliation:
1. Department of Mathematics, Jiangxi University of Finance and Economics, Nanchang 330013, P. R. China
Abstract
This paper investigates a finance system with nonconstant elasticity of demand. First, under some conditions, the system has invariant algebraic surfaces and the analytic expressions of the surfaces are given. Furthermore, when the two surfaces coincide and become one surface, the dynamics on the surface are analyzed and a globally stable equilibrium is found. Second, by using the normal form theory, the Hopf bifurcation is studied and the approximate expression and stability of the bifurcating periodic orbit are obtained. Third, the chaotic behaviors are investigated and the route to chaos is period-doubling bifurcations. Moreover, it is found that the system has coexisting attractors, including periodic attractor and periodic attractor, chaotic attractor and chaotic attractor. With the change of parameter, the two chaotic attractors coincide and then a symmetrical chaotic attractor arises.
Funder
the Educational Commission Science Program of Jiangxi Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献