Affiliation:
1. Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
Abstract
In this work, we study the Abelian integral [Formula: see text] corresponding to the following Liénard system, [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are real bounded parameters. By using the expansion of [Formula: see text] and a new algebraic criterion developed in [Grau et al., 2011], it will be shown that the sharp upper bound of the maximal number of isolated zeros of [Formula: see text] is 4. Hence, the above system can have at most four limit cycles bifurcating from the corresponding period annulus. Moreover, the configuration (distribution) of the limit cycles is also determined. The results obtained are new for this kind of Liénard system.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献