MODELING NEURONS BY SIMPLE MAPS

Author:

KINOUCHI OSAME1,TRAGTENBERG MARCELO H. R.2

Affiliation:

1. Instituto de Física, Universidade de São Paulo, CP 66318, CEP 05315–970 São Paulo, SP, Brazil

2. Departamento de Física, Universidade Federal de Santa Catarina, CP 476, CEP 88040–900 Florianópolis, SC, Brazil

Abstract

We introduce a simple generalization of graded response formal neurons which presents very complex behavior. Phase diagrams in full parameter space are given, showing regions with fixed points, periodic, quasiperiodic and chaotic behavior. These diagrams also represent the possible time series learnable by the simplest feed-forward network, a two input single-layer perceptron. This simple formal neuron (‘dynamical perceptron’) behaves as an excitable ele ment with characteristics very similar to those appearing in more complicated neuron models like FitzHugh-Nagumo and Hodgkin-Huxley systems: natural threshold for action potentials, dampened subthreshold oscillations, rebound response, repetitive firing under constant input, nerve blocking effect etc. We also introduce an ‘adaptive dynamical perceptron’ as a simple model of a bursting neuron of Rose-Hindmarsh type. We show that networks of such elements are interesting models which lie at the interface of neural networks, coupled map lattices, excitable media and self-organized criticality studies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3