Global Analysis of Stochastic Systems by the Digraph Cell Mapping Method Based on Short-Time Gaussian Approximation

Author:

Han Qun1ORCID,Xu Wei2,Hao Huibing3,Yue Xiaole2

Affiliation:

1. College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China

2. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, P. R. China

3. Department of Mathematics, Hubei Engineering University, Xiaogan 432100, P. R. China

Abstract

The digraph cell mapping method is popular in the global analysis of stochastic systems. Traditionally, the Monte Carlo simulation is used in finding the image cells of one-step mapping, and it is notably costly in the computation time. In this paper, a novel short-time Gaussian approximation (STGA) scheme is incorporated into the digraph cell mapping method to study the global analysis of nonlinear dynamical systems under Gaussian white noise excitations. In order to find out all the active image cells in one-step cell mapping quickly, the STGA scheme together with a probability truncation method is introduced for systems without periodic excitation, and then in the case with periodic excitation. The global structures, such as the stochastic attractors, stochastic basins of attraction and stochastic saddles, are calculated by the digraph analysis algorithm. The proposed methodology has been applied to three typical stochastic dynamical systems. For each system, the effectiveness and superiority of the proposed STGA scheme are verified by checking the image cells of one-step mapping and comparing with the results of Monte Carlo simulation. It is found in the global analysis that the change of the amplitude of periodic excitation induces stochastic bifurcations in the stochastic Duffing system. Moreover, a stochastic bifurcation occurs in the stochastic Lorenz system with the increase of noise intensities.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3