Affiliation:
1. Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China
Abstract
The existence of chaos in the Rulkov neuron model is proved based on Marotto’s theorem. Firstly, the stability conditions of the model are briefly renewed through analyzing the eigenvalues of the model, which are very important preconditions for the existence of a snap-back repeller. Secondly, the Rulkov neuron model is decomposed to a one-dimensional fast subsystem and a one-dimensional slow subsystem by the fast–slow dynamics technique, in which the fast subsystem has sensitive dependence on the initial conditions and its snap-back repeller and chaos can be verified by numerical methods, such as waveforms, Lyapunov exponents, and bifurcation diagrams. Thirdly, for the two-dimensional Rulkov neuron model, it is proved that there exists a snap-back repeller under two iterations by illustrating the existence of an intersection of three surfaces, which pave a new way to identify the existence of a snap-back repeller.
Funder
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献