Experimentally Accessible Orbits Near a Bykov Cycle

Author:

Barrio Roberto1,Carvalho Maria2,Castro Luísa3,Rodrigues Alexandre A. P.2

Affiliation:

1. Departamento de Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

2. Centro de Matemática da Univ. do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

3. INESC TEC Porto and Center for Health Technology and Services Research (CINTESIS), Faculdade de Medicina da Universidade do Porto, Portugal

Abstract

This paper reports numerical experiments done on a two-parameter family of vector fields which unfold an attracting heteroclinic cycle linking two saddle-foci. We investigated both local and global bifurcations due to symmetry breaking in order to detect either hyperbolic or chaotic dynamics. Although a complete understanding of the corresponding bifurcation diagram and the mechanisms underlying the dynamical changes is still out of reach, using a combination of theoretical tools and computer simulations we have uncovered some complex patterns. We have selected suitable initial conditions to analyze the bifurcation diagrams, and regarding these solutions we have located: (a) an open domain of parameters with regular dynamics; (b) infinitely many parabolic-type curves associated to homoclinic Shilnikov cycles which act as organizing centers; (c) a crisis region related to the destruction or creation of chaotic attractors; (d) a large Lebesgue measure set of parameters where chaotic regimes are dominant, though sinks and chaotic attractors may coexist, and in whose complement we observe shrimps.

Funder

the Spanish Research

European Regional Development Fund and Diputación General de Aragón

CMUP

INVESTIGADOR FCT

RNF

National Funds through the Portuguese funding agency FCT – Fundação para a Ciência e a Tecnologia

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3