A NOVEL APPROACH OSA DETECTION USING SINGLE-LEAD ECG SCALOGRAM BASED ON DEEP NEURAL NETWORK

Author:

SINGH SINAM AJITKUMAR1,MAJUMDER SWANIRBHAR2

Affiliation:

1. Department of Electronics and Communication Engineering, NERIST, Nirjuli, Arunachal-Pradesh 791109, India

2. Department of Information Technology, Tripura University, Agartala 799022, India

Abstract

Obstructive sleep apnea (OSA) is the most common and severe breathing dysfunction which frequently freezes the breathing for longer than 10[Formula: see text]s while sleeping. Polysomnography (PSG) is the conventional approach concerning the treatment of OSA detection. But, this approach is a costly and cumbersome process. To overcome the above complication, a satisfactory and novel technique for interpretation of sleep apnea using ECG were recording is under development. The methods for OSA analysis based on ECG were analyzed for numerous years. Early work concentrated on extracting features, which depend entirely on the experience of human specialists. A novel approach for the prediction of sleep apnea disorder based on the convolutional neural network (CNN) using a pre-trained (AlexNet) model is analyzed in this study. After filtering per-minute segment of the single-lead ECG recording accompanied by continuous wavelet transform (CWT), the 2D scalogram images are generated. Finally, CNN based on deep learning algorithm is adopted to enhance the classification performance. The efficiency of the proposed model is compared with the previous methods that used the same datasets. Proposed method based on CNN is able to achieve the accuracy of 86.22% with 90% sensitivity in per-minute segment OSA classification. Based on per-recording OSA diagnosis, our works correctly classify all the abnormal apneic recording with 100% accuracy. Our OSA analysis model using time-frequency scalogram generates excellent independent validation performance with different state-of-the-art OSA classification systems. Experimental results proved that the proposed method produces excellent performance outcomes with low cost and less complexity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3