MODEL FOR TRANSMISSION AND OPTIMAL CONTROL OF ANTHRAX INVOLVING HUMAN AND ANIMAL POPULATION

Author:

ZEWDIE ASSEFA DENEKEW12ORCID,GAKKHAR SUNITA1,GUPTA SHIV KUMAR1

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India

2. Department of Mathematics, Debre Tabor University, Debre Tabor, Amhara, Ethiopia

Abstract

Anthrax is a disease caused by Bacillus anthracis, commonly affects animals as well as humans health. In this paper, a nonlinear deterministic anthrax model involving human and animal is proposed and analyzed. The reproduction number [Formula: see text] and equilibrium points are explored to study the dynamic behavior of the disease. The existence and stability of equilibrium points are discussed. For [Formula: see text], the disease-free equilibrium [Formula: see text] is globally stable. However, it is unstable when [Formula: see text] and a locally stable endemic equilibrium point [Formula: see text] exists. The model is then extended to optimal control model considering human vaccination, animal vaccination and proper removal of carcass. The vaccination class of human and animal population appears separately in a model. The existence and characterization of optimal control are discussed. The numerical simulations are carried out for the choice of parametric values and initial conditions. These illustrate scavengers in the suspected area which eat infected dead body of animals contributing to the effort of reducing the expansion of disease. In addition, numerical comparison analysis with four distinct control strategies is carried out. Our findings show that each control technique has its own influence on reducing the total number of infections in the human and animal populations. The cumulative impact of all control measures is found to be extremely effective in lowering the prevalence of the disease.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3