EXTINCTION THRESHOLD IN A STOCHASTIC EPIDEMIC MODEL FOR ROTAVIRUS DYNAMICS WITH CONTAMINATED ENVIRONMENT

Author:

MALIYONI MILLIWARD1ORCID,MAGAMBA KONDWANI2,KADALEKA SOLOMON3

Affiliation:

1. Mathematical Sciences Department, University of Malawi, P. O. Box 280, Zomba, Malawi

2. Department of Applied Studies, Malawi University of Science and Technology, P. O. Box 5196, Limbe, Malawi

3. Department of Mathematics and Statistics, Malawi University of Business and Applied Sciences, P/Bag 303, Chichiri, Blantyre 3, Malawi

Abstract

Mathematical models for the transmission dynamics of infectious diseases have aided our understanding of the important factors that drive epidemic patterns. In this paper, we formulate and analyze a stochastic epidemic model, a continuous-time Markov chain, in order to understand rotavirus dynamics with a contaminated environment. The assumptions of the deterministic model are utilized in the formulation of the corresponding stochastic model. We perform both local and global stability analyses of the equilibria of the deterministic model with respect to the basic reproduction number. The extinction threshold for the stochastic model and conditions for either disease extinction or persistence are derived by employing the branching process to the infectious classes only. It is shown that the probability of rotavirus extinction obtained from the branching process is in excellent agreement with the numerically approximated probability. Numerical results indicate that the probability of rotavirus extinction is the highest if the contaminated environment introduces the virus into a totally susceptible population at the beginning of the epidemic process. Thus, a major rotavirus outbreak is likely if the virus emanates from infectious children at the onset of the epidemic. Results of sensitivity analysis showed that shedding of the virus into the environment by infectious children is the most sensitive parameter of the model. Further, it is shown that decreasing the shedding rate leads to an increase in the probability of disease extinction and vice versa. This, therefore, implies that disposal of stool of infectious children should be well managed if efforts to curb further spread of the disease or even eliminating it are to bear desirable fruits.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3