DISCRETE MATURITY AND DELAY DIFFERENTIAL-DIFFERENCE MODEL OF HEMATOPOIETIC CELL DYNAMICS WITH APPLICATIONS TO ACUTE MYELOGENOUS LEUKEMIA

Author:

ADIMY MOSTAFA1ORCID,CHEKROUN ABDENNASSER2,EL ABDLLAOUI ABDERRAHIM3,MARZORATI ARSÈNE1

Affiliation:

1. Inria, Univ Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 Bd. du 11 Novembre 1918, F-69200 Villeurbanne Cedex, France

2. Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, University of Tlemcen Tlemcen 13000, Algeria

3. Laboratory of Mathematics, Computer Science and Applications, Security of Information Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat, Morocco

Abstract

In the last few years, many efforts were oriented towards describing the hematopoiesis phenomenon in normal and pathological situations. This complex biological process is organized as a hierarchical system that begins with primitive hematopoietic stem cells (HSCs) and ends with mature blood cells: red blood cells, white blood cells and platelets. Regarding acute myelogenous leukemia (AML), a cancer of the bone marrow and blood, characterized by a rapid proliferation of immature cells, which eventually invade the bloodstream, there is a consensus about the target cells during the HSCs development which are susceptible to leukemic transformation. We propose and analyze a mathematical model of HSC dynamics taking into account two phases in the cell cycle, a resting and a proliferating one, by allowing just after division a part of HSCs to enter the resting phase and the other part to come back to the proliferating phase to divide again. The resulting mathematical model is a system of nonlinear differential-difference equations. Due to the hierarchical organization of the hematopoiesis, we consider n stages of HSCs characterized by their maturity levels. We obtain a system of 2n nonlinear differential-difference equations. We study the existence, uniqueness, positivity, boundedness and unboundedness of the solutions. We then investigate the existence of positive and axial steady states for the system, and obtain conditions for their stability. Sufficient conditions for the global asymptotic stability of the trivial steady state as well as conditions for its instability are obtained. Using neutral differential equation associated to the differential-difference system, we also obtain results on the local asymptotic stability of the positive steady state. Numerical simulations are carried out to show the influence of variations of the differentiation rates and self-renewal coefficients of the HSCs on the behavior of the system. In particular, we show that a blocking of differentiation at an early stage of HSC development can lead in an overexpression of very immature cells. Such situation corresponds to the observation in the case of AML.

Funder

DGRSDT of Algeria

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3