A Framework for OpenCL Task Scheduling on Heterogeneous Multicores

Author:

Ghose Anirban1ORCID,Dokara Lokesh1,Dey Soumyajit1,Mitra Pabitra1

Affiliation:

1. Indian Institute of Technology, Kharagpur, India

Abstract

We present an intelligent scheduling framework which takes as input a set of OpenCL kernels and distributes the workload across multiple CPUs and GPUs in a heterogeneous multicore platform. The framework relies on a Machine Learning (ML) based frontend that analyzes static program features of OpenCL kernels and predicts the ratio in which kernels are to be distributed across CPUs and GPUs. The framework provides such static analysis information along with system state information like runtime availability details of computing cores using well defined programming interfaces. Such interfaces are to be utilized by a user specified scheduling strategy. Given such a scheduling strategy, the framework generates device specific binaries and dispatches them across multiple devices in the heterogeneous platform as per the strategy. We test our scheduling framework extensively using different OpenCL task mixes of varying sizes and computational nature. Along with the scheduling framework, we propose a set of novel partition-aware scheduling strategies for heterogeneous multicores. Our proposed approach yields considerably better results in terms of schedule makespan when compared with the current state of the art ML based methods for scheduling of OpenCL workloads across heterogeneous multicores.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3