A NOTE ON THE IMPLEMENTATION OF REPLICATION-BASED GARBAGE COLLECTION FOR MULTITHREADED APPLICATIONS AND MULTIPROCESSOR ENVIRONMENTS

Author:

AZAGURY ALAIN1,KOLODNER ELLIOT K.1,PETRANK EREZ1

Affiliation:

1. Department of System Technology, IBM Haifa Research Lab, MATAM, Haifa 31905, Israel

Abstract

Replication-based incremental garbage collection is one of the more appealing concurrent garbage collection algorithms known today. It allows continuous operation of the application (the mutator) with very short pauses for garbage collection. There is a growing need for such garbage collectors suitable for a multithreaded environments such as the Java Virtual Machine. Furthermore, it is desirable to construct collectors that also work on multiprocessor computers. We begin by pointing out an important, yet subtle point, which arises when implementing the replication-based garbage collector for a multithreaded environment. We first show that a simple and natural implementation of the algorithm may lead to an incorrect behavior of multithreaded applications. We then show that another simple and natural implementation eliminates the problem completely. Thus, the contribution of this part is in stressing this warning to future implementors. Next, we address the effects of the memory coherence model on this algorithm. We show that even when the algorithm is properly implemented with respect to our first observation, a problem might still arise when a multiprocessor system is used. Adopting a naive solution to this problem results in very frequent (and expensive) synchronization. We offer a slight modification to the algorithm which eliminates the problem and requires little synchronization.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A parallel, incremental, mostly concurrent garbage collector for servers;ACM Transactions on Programming Languages and Systems;2005-11

2. A parallel, incremental and concurrent GC for servers;ACM SIGPLAN Notices;2002-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3