Generalizing the relation between the Kauffman bracket and Jones polynomial

Author:

Kaiser Uwe1

Affiliation:

1. Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725-1555, USA

Abstract

We generalize Kauffman’s famous formula defining the Jones polynomial of an oriented link in [Formula: see text]-space from his bracket and the writhe of an oriented diagram [L. Kauffman, State models and the Jones polynomial, Topology 26(3) (1987) 395–407]. Our generalization is an epimorphism between skein modules of tangles in compact connected oriented [Formula: see text]-manifolds with markings in the boundary. Besides the usual Jones polynomial of oriented tangles we will consider graded quotients of the bracket skein module and Przytycki’s [Formula: see text]-analog of the first homology group of a [Formula: see text]-manifold [J. Przytycki, A [Formula: see text]-analogue of the first homology group of a [Formula: see text]-manifold, in Contemporary Mathematics, Vol. 214 (American Mathematical Society, 1998), pp. 135–144]. In certain cases, e.g., for links in submanifolds of rational homology [Formula: see text]-spheres, we will be able to define an epimorphism from the Jones module onto the Kauffman bracket module. For the general case we define suitably graded quotients of the bracket module, which are graded by homology. The kernels define new skein modules measuring the difference between Jones and bracket skein modules. We also discuss gluing in this setting.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3