ARTIN PRESENTATIONS I: GAUGE THEORY, 3 + 1 TQFT'S AND THE BRAID GROUPS

Author:

WINKELNKEMPER H. E.1

Affiliation:

1. Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Abstract

We inititate the systematic study of Artin Presentations, (discovered in 1975 by González-Acuña), which characterize the fundamental groups of closed, orientable 3-manifolds, and form a discrete equivalent of the theory of open book decompositions with planar pages of such manifolds. We list and prove the basic properties, state some fundamental problems and describe some of the advantages of the theory: e.g., an Artin Presentation of π1 (M3) does not just determine the closed, orientable 3-manifold M3, but also a canonical, smooth simply-connected cobordism of it, allowing us to tap into 4-dimensional gauge theory (and 3 + 1 TQFT's) in a more direct, purely discrete, functorial manner than others. Thus, in section 4, instead of using PDE's, we show how a canonical action of the commutator subgroup [Pn, Pn] of the pure braid group Pn can be used to study the smooth structures on a closed, smooth-connected 4-manifold with b2 = n, in a systematic way. However, the main purpose of this first paper is to Artin Presentations to set up simple criteria, testable with, say, MAGMA on the computer (where then no knowledge of topology is required) for finding explicit counter-examples to the so-called Weak Poincaré Conjecture: "Every homotopy 3-sphere bounds a smooth, compact, contractible 4-manifold," as well as: "Every irreducible Z-homology 3-sphere Σ, with π1 (Σ) = I (120) is homeomorphic to Σ (2, 3, 5)" and other conjectures implied by Thurston's Geometrization Conjecture. One first philosophical goal is to convince the reader that the truth of these conjectures is at least as unlikely as that of the Andrews-Curtis Conjecture and that ultimately, Artin Presentation Theory is a non-trivial intersection of string/M theory number theory.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artin presentations, triangle groups, and 4-manifolds;Boletín de la Sociedad Matemática Mexicana;2022-03-12

2. The explicit algebraic autonomy of Artin presentation theory and the Fox Calculus. I;Boletín de la Sociedad Matemática Mexicana;2015-08-08

3. Artin presentations and fundamental groups of 3-manifolds;Topology and its Applications;2012-03

4. SELF-INTERSECTION NUMBERS OF PATHS IN COMPACT SURFACES;Journal of Knot Theory and Its Ramifications;2011-03

5. TORELLI ACTIONS AND SMOOTH STRUCTURES ON FOUR MANIFOLDS;Journal of Knot Theory and Its Ramifications;2008-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3