Affiliation:
1. Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
Abstract
We explore a knot invariant derived from colorings of corresponding [Formula: see text]-tangles with arbitrary connected quandles. When the quandle is an abelian extension of a certain type the invariant is equivalent to the quandle [Formula: see text]-cocycle invariant. We construct many such abelian extensions using generalized Alexander quandles without explicitly finding [Formula: see text]-cocycles. This permits the construction of many [Formula: see text]-cocycle invariants without exhibiting explicit [Formula: see text]-cocycles. We show that for connected generalized Alexander quandles the invariant is equivalent to Eisermann’s knot coloring polynomial. Computations using this technique show that the [Formula: see text]-cocycle invariant distinguishes all of the oriented prime knots up to 11 crossings and most oriented prime knots with 12 crossings including classification by symmetry: mirror images, reversals, and reversed mirrors.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Principal and doubly homogeneous quandles;Monatshefte für Mathematik;2019-10-09
2. Algebraic and Computational Aspects of Quandle 2-Cocycle Invariant;Knots, Low-Dimensional Topology and Applications;2019
3. Longitudinal mapping knot invariant for SU(2);Journal of Knot Theory and Its Ramifications;2018-10