Affiliation:
1. Department of Mathematics, George Washington University, Washington, DC, USA
Abstract
We investigate algebraic and computability-theoretic properties of orderable magmas. A magma is an algebraic structure with a single binary operation. A right order on a magma is a linear ordering of its domain, which is right-invariant with respect to the magma operation. We use tools of computability theory to investigate Turing complexity of orders on computable orderable magmas. A magma is computable if it is finite, or if its domain can be identified with the set of natural numbers and the magma operation is computable. Interesting orderable magmas that are not even associative come from knot theory.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Order-Theoretic Analysis of Universe Polymorphism;Proceedings of the ACM on Programming Languages;2023-01-09
2. Orderability of link quandles;Proceedings of the Edinburgh Mathematical Society;2021-08