Affiliation:
1. Sorbonne University, Université de technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, BP 20529, 60205 Compiègne cedex, France
Abstract
Advancing the knowledge of the biomechanics of the human body is essential to improve the clinical decision-makings of musculoskeletal disorders in the framework of in silico medicine. An impressive number of research projects focused on the development of rigid-body musculoskeletal models have been conducted over the world thanks to the new research directives. However, the application of these models in clinical practices remains a challenging issue. The objective of this review paper was to present the most current rigid-body musculoskeletal models of the human body systems and to analyze their trends and weaknesses for clinical applications. Then, recommendations were proposed for future researches toward fully clinical decision support. A systematic review process was performed. Well-selected studies related to the most current rigid-body 3D musculoskeletal models for each body system component (jaw, cervical spine, upper limbs, lumbar spine, and lower limbs) were summarized and explored. Trends in rigid musculoskeletal modeling are highlighted as personalization, new imaging techniques for specific joint kinematics, and computational efficiency. Weaknesses are highlighted as modeling assumptions, use of generic model, lack of modeling consensus, model validation, and parameter and model uncertainties. Future directions related to joint and muscle modeling, neuro-musculoskeletal modeling, model validation, data and model uncertainty quantification are recommended.
Publisher
World Scientific Pub Co Pte Lt
Subject
Orthopedics and Sports Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献