Analysis and Recommendation of Outdoor Activities for Smart City Users Based on Real-Time Contextual Data

Author:

Sekhar S. R. Mani1ORCID,Ahmed D. M. Mushtaq1ORCID,Siddesh G. M.2ORCID

Affiliation:

1. Department of Information Science and Engineering, M. S. Ramaiah Institute of Technology, Bangalore, Karnataka, India

2. Department of Artificial Intelligence and Data Science, M. S. Ramaiah Institute of Technology, Bangalore, Karnataka, India

Abstract

Smart cities leverage advanced technologies to enhance urban living through the real-time collection, processing, and analysis of contextual information. The potential to improve residents’ outdoor experiences in these cities increases dramatically as smart technologies are integrated into urban environments, making them more interconnected. It helps to explore the pivotal role of real-time data in optimizing various aspects of city management, focusing on key domains such as traffic, public transportation, emergency response, waste management, and environmental monitoring. A variety of datasets, such as those on the weather, air quality, traffic patterns, event schedules, and user activity patterns, are gathered and analyzed as part of the methodology. This data are processed and interpreted using machine learning algorithms, which find correlations, trends, and patterns that affect outdoor activities. Suggestions for appropriate outdoor activities can be generated in real time based on contextual information, past behavior, and user preferences. This model addresses the dynamic and context-aware nature of Smart Cities by proposing a novel framework for real-time contextual information prediction and personalized outdoor activity suggestions for users. Leveraging the vast amount of data generated by Smart City infrastructure, this study integrates advanced data analysis techniques with deep learning models to enhance the urban living experience. A variety of datasets, such as those on the weather, air quality, traffic patterns, event schedules, and user activity patterns, are gathered and analyzed as part of the methodology. This data are processed and interpreted using machine learning algorithms, which find correlations, trends, and patterns that affect outdoor activities. Suggestions for appropriate outdoor activities can be generated in real time based on contextual information, past behavior, and user preferences. The framework begins by collecting and processing diverse datasets from sensors, Internet of Things (IoT) devices, and other urban sources to create a comprehensive understanding of the current city context. Deep learning models, such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), are employed to analyze this data and predict real-time contextual information, including weather conditions, traffic patterns, and social events. It contributes to the growing field of Smart Cities by introducing a scalable and adaptable framework that harnesses the power of deep learning to improve urban living. The result shows that the proposed air pollution model predicted 96.06700 PM2.5 concentration levels, subsequently the temperature model predicted 14.06800C. The integration of real-time contextual information prediction and personalized outdoor activity suggestions showcases the potential for creating more engaging and user-centric Smart City ecosystems. This research attempts to provide personalized recommendations that are in line with users’ preferences, the state of the environment at the time, and other pertinent contextual factors by utilizing data from multiple sources, including IoT devices, mobile applications, and environmental sensors.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3