Hybrid intelligent modeling approach for online predicting and simulating surface temperature of HVs

Author:

Tie Ming1ORCID,Fang Hong1,Wang Jianlin1,Chen Weihua1

Affiliation:

1. Science and Technology on Space Physics Laboratory, Beijing, 100076, P. R. China

Abstract

Online prediction as well as online simulation of surface temperature will play a significant role in flight safety of future near space hypersonic vehicles (HVs). But it still remains a classical scientific problem both in thermodynamics and aerospace science. In view of the complex HV structure and complex heat conduction procedure, three-dimensional numerical simulation is too inefficient for online prediction, while current rapid computation methods cannot meet the requirement of accuracy. Therefore, a hybrid intelligent dynamic modeling approach is proposed to estimate the surface temperature of HV with the combination of mechanism equations, test data and intelligent modeling technology. A simplified model based on a mechanism equation and experimental formulas is presented for predicting or simulating transient heat conduction procedure efficiently, while a case-based reasoning (CBR) algorithm is developed to estimate two uncertain coefficients in the simplified model. Furthermore, a support vector regression (SVR)-based model is developed to compensate the modeling error. With the data both from high-precision finite element computation and from real-world HV thermal protection experiments, a number of comparative simulations demonstrate the effectiveness of the proposed hybrid intelligent modeling approach.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3