Maximum max-k-clique subgraphs in cactus subtree graphs

Author:

Gavril Fanica1ORCID

Affiliation:

1. Computer Science Department, Technion, Haifa, Israel

Abstract

In this paper, we analyze the intersection graphs of subtrees in a cactus, called cactus subtree graphs. A max-k-clique subgraph of a graph is an induced subgraph whose maximum clique has at most [Formula: see text] vertices. We describe a polynomial time algorithm to find a maximum weight max-[Formula: see text]-clique subgraph in a cactus subtree graph when [Formula: see text] is fixed. In perfect graphs this problem is equivalent to the maximum weight [Formula: see text]-colorable subgraph problem. In many applications like scheduling production lines and communication networks on imperfect graphs, a maximum max-[Formula: see text]-clique subgraph solution is better than a maximum [Formula: see text]-colorable subgraph solution. In addition, we describe cactus subtree graphs polynomial time algorithms for recognition, maximum independent sets, maximum cliques, maximum induced bipartite graphs, maximum induced forests and minimum feedback vertex sets.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3