Linear layouts of weakly triangulated graphs

Author:

Mukhopadhyay Asish1,Rao S. V.2,Pardeshi Sidharth3,Gundlapalli Srinivas4

Affiliation:

1. School of Computer Science, University of Windsor, Windsor, Ontario, N9B 3P4 Canada

2. Department of Computer Science and Engineering, Indian Institute of Technology, Guwahati 781 039, Assam, India

3. Google Inc. 1600 Amphitheater Pkwy, Mountain View 94043, California, USA

4. Oracle India Pvt. Limited, Hyderabad, Telengana, India

Abstract

A graph [Formula: see text] is said to be triangulated if it has no chordless cycles of length 4 or more. Such a graph is said to be rigid if, for a valid assignment of edge lengths, it has a unique linear layout and non-rigid otherwise. Damaschke [Point placement on the line by distance data, Discrete Appl. Math. 127(1) (2003) 53–62] showed how to compute all linear layouts of a triangulated graph, for a valid assignment of lengths to the edges of [Formula: see text]. In this paper, we extend this result to weakly triangulated graphs, resolving an open problem. A weakly triangulated graph can be constructively characterized by a peripheral ordering of its edges. The main contribution of this paper is to exploit such an edge order to identify the rigid and non-rigid components of [Formula: see text]. We first show that a weakly triangulated graph without articulation points has at most [Formula: see text] different linear layouts, where [Formula: see text] is the number of quadrilaterals (4-cycles) in [Formula: see text]. When [Formula: see text] has articulation points, the number of linear layouts is at most [Formula: see text], where [Formula: see text] is the number of nodes in the block tree of [Formula: see text] and [Formula: see text] is the total number of quadrilaterals over all the blocks. Finally, we propose an algorithm for computing a peripheral edge order of [Formula: see text] by exploiting an interesting connection between this problem and the problem of identifying a two-pair in [Formula: see text]. Using an [Formula: see text] time solution for the latter problem, we propose an [Formula: see text] time algorithm for computing its peripheral edge order, where [Formula: see text] and [Formula: see text] are respectively the number of edges and vertices of [Formula: see text]. For sparse graphs, the time complexity can be improved to [Formula: see text], using the concept of handles [R. B. Hayward, J. P. Spinrad and R. Sritharan, Improved algorithms for weakly chordal graphs, ACM Trans. Algorithms 3(2) (2007) 19pp].

Funder

National Science and Engineering Research Council, Canada

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Weakly Chordal Graphs from Arbitrary Graphs;Transactions on Computational Science XXXIX;2022

2. A Study of Three Different Approaches to Point Placement on a Line in an Inexact Model;Transactions on Computational Science XXXIV;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3