Iterative Prompt Refinement for Mining Gene Relationships from ChatGPT

Author:

Chen Yibo1ORCID,Gao Jeffrey2ORCID,Petruc Marius3ORCID,Hammer Richard D.4ORCID,Popescu Mihail5ORCID,Xu Dong6ORCID

Affiliation:

1. Institute for Data Science and Informatics, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA

2. Marriotts Ridge High School, Marriottsville, MD 21104, USA

3. Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA

4. Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA

5. Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri, Columbia, MO 65211, USA

6. Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA

Abstract

ChatGPT has demonstrated its potential as a surrogate knowledge graph. Trained on extensive data sources, including open-access publications, peer-reviewed research articles, and biomedical websites, ChatGPT extracted information on gene relationships and biological pathways so that it can be used to predict them. However, a major challenge is model hallucination, that is, high false positive rates. To assess and address this challenge, we systematically evaluated ChatGPT’s capacity for predicting gene relationships using GPT-3.5-turbo, GPT-4, and GPT-4o. Benchmarking against the KEGG Pathway Database as the ground truth, we experimented with diverse prompting strategies, targeting gene relationships of activation, inhibition, and phosphorylation. We introduced an innovative iterative prompt refinement technique. By assessing prompt efficacy using metrics such as F-1 score, precision, and recall, GPT-4 suggested improved prompts. A refined prompt, which combines a specialized role with explanatory text, significantly enhanced the performance. Going beyond pairwise gene relationships, we also deciphered complex gene interplays, such as gene interaction chains and pathways pertinent to diseases such as non-small cell lung cancer. Direct prompts showed limited success, but “least-to-most” prompting exhibited significant potentials for such network constructions. The methods in this study may be used for other bioinformatics prediction problems.

Funder

National Institutes of Health

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3