Affiliation:
1. College of Mathematics and Computer Science, Fuzhou University Fuzhou, Fujian 350108, P. R. China
2. Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, P. R. China
Abstract
As interactions among genetic variants in different genes can be an important factor for predicting complex diseases, many computational methods have been proposed to detect if a particular set of genes has interaction with a particular complex disease. However, even though many such methods have been shown to be useful, they can be made more effective if the properties of gene–gene interactions can be better understood. Towards this goal, we have attempted to uncover patterns in gene–gene interactions and the patterns reveal an interesting property that can be reflected in an inequality that describes the relationship between two genotype variables and a disease-status variable. We show, in this paper, that this inequality can be generalized to [Formula: see text] genotype variables. Based on this inequality, we establish a conditional independence and redundancy (CIR)-based definition of gene–gene interaction and the concept of an interaction group. From these new definitions, a novel measure of gene–gene interaction is then derived. We discuss the properties of these concepts and explain how they can be used in a novel algorithm to detect high-order gene–gene interactions. Experimental results using both simulated and real datasets show that the proposed method can be very promising.
Funder
Natural Science Foundation of Fujian Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献