Impact of low-confidence interactions on computational identification of protein complexes

Author:

Paul Madhusudan12ORCID,Anand Ashish1

Affiliation:

1. Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

2. Department of Computer and System Sciences, Visva-Bharati, Santiniketan 731235, West Bengal, India

Abstract

Protein complexes are the cornerstones of most of the biological processes. Identifying protein complexes is crucial in understanding the principles of cellular organization with several important applications, including in disease diagnosis. Several computational techniques have been developed to identify protein complexes from protein–protein interaction (PPI) data (equivalently, from PPI networks). These PPI data have a significant amount of false positives, which is a bottleneck in identifying protein complexes correctly. Gene ontology (GO)-based semantic similarity measures can be used to assign a confidence score to PPIs. Consequently, low-confidence PPIs are highly likely to be false positives. In this paper, we systematically study the impact of low-confidence PPIs on the performance of complex detection methods using GO-based semantic similarity measures. We consider five state-of-the-art complex detection algorithms and nine GO-based similarity measures in the evaluation. We find that each complex detection algorithm significantly improves its performance after the filtration of low-similarity scored PPIs. It is also observed that the percentage improvement and the filtration percentage (of low-confidence PPIs) are highly correlated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3