Kernel differential subgraph reveals dynamic changes in biomolecular networks

Author:

Xie Jiang1ORCID,Lu Dongfang1,Li Jiaxin1,Wang Jiao2,Zhang Yong3,Li Yanhui3,Nie Qing4

Affiliation:

1. School of Computer Engineering and Science, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China

2. Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China

3. Pulmonary Department, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, P. R. China

4. Department of Mathematics, University of California, Irvine, Irvine, California, USA

Abstract

Many major diseases, including various types of cancer, are increasingly threatening human health. However, the mechanisms of the dynamic processes underlying these diseases remain ambiguous. From the holistic perspective of systems science, complex biological networks can reveal biological phenomena. Changes among networks in different states influence the direction of living organisms. The identification of the kernel differential subgraph (KDS) that leads to drastic changes is critical. The existing studies contribute to the identification of a KDS in networks with the same nodes; however, networks in different states involve the disappearance of some nodes or the appearance of some new nodes. In this paper, we propose a new topology-based KDS (TKDS) method to explore the core module from gene regulatory networks with different nodes in this process. For the common nodes, the TKDS method considers the differential value (D-value) of the topological change. For the different nodes, TKDS identifies the most similar gene pairs and computes the D-value. Hence, TKDS discovers the essential KDS, which considers the relationships between the same nodes as well as different nodes. After applying this method to non-small cell lung cancer (NSCLC), we identified 30 genes that are most likely related to NSCLC and extracted the KDSs in both the cancer and normal states. Two significance functional modules were revealed, and gene ontology (GO) analyses and literature mining indicated that the KDSs are essential to the processes in NSCLC. In addition, compared with existing methods, TKDS provides a unique perspective in identifying particular genes and KDSs related to NSCLC. Moreover, TKDS has the potential to predict other critical disease-related genes and modules.

Funder

the National Key R&D Program of China

the Project of NSFS

the Major Research Plan of NSFC

the Project of Young Eastern Scholar

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3