CuO:V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics

Author:

Lather Aryan Singh1ORCID,Poonia Kanika1ORCID,Kundu R. S.1ORCID,Ahlawat Neetu1ORCID,Nehra Anuj1ORCID,Kaur Shubhpreet2ORCID

Affiliation:

1. Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana, India

2. Department of Physics, SLIET, Sangrur 148106, Punjab, India

Abstract

This study focuses on the properties of Vanadium and Copper co-doped Barium Zirconate Titanate (BZT) for potential technological applications. Various doping ratios of CuO:V2O5 were used to synthesize the materials, and X-ray diffraction (XRD) confirmed a tetragonal phase in all samples. The grain density and dimensions decreased with higher concentrations of V2O5 and CuO. FTIR spectra confirmed the compositional structure and bonding of the samples. The impedance analysis indicated that higher doping concentrations facilitated charge conduction at grain boundaries. Dielectric relaxation was studied using the Havriliak–Negami model and electrical modulus behavior was analyzed. Activation energy values from Arrhenius fitting matched those from impedance data, suggesting the same type of charge carriers. The study revealed that elevated levels of V concentration induced charge carriers to exhibit hopping behavior, thereby enhancing conductivity. Conversely, higher Cu concentration impeded hopping, leading to a swift rise in activation energy.

Funder

University Grants Commission

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3