Affiliation:
1. College of Transportation, Jilin University, No. 5988, Renmin Street Changchun 130022, P. R. China
Abstract
A support vector machine (SVM) optimized by genetic algorithm (GA)-based damage identification method is proposed in this paper. The best kernel parameters are obtained by GA from selection, crossover and mutation, and utilized as the model parameters of SVM. The combined vector of mode shape ratio and frequency rate is used as the input variable. A numerical example for a simply supported bridge with five girders is provided to verify the feasibility of the method. Numerical simulation shows that the maximal relative errors of GA-SVM for the damage identification of single, two and three suspicious damaged elements is 1.84%. Meanwhile, comparative analyzes between GA-SVM and radical basis function (RBF), back propagation networks optimized by GA (GA-BP) were conducted, the maximal relative errors of RBF and GA-BP are 6.91% and 5.52%, respectively. It indicates that GA-SVM can assess the damage conditions with better accuracy.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Theoretical Computer Science,Software
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献