REM Studies of Adsorption-Induced Phase Transitions and Faceting in the Si(111)-Au System

Author:

Aoki Koyu1,Minoda Hiroki1,Tanishiro Yasumasa1,Yagi Katsumichi1

Affiliation:

1. Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan

Abstract

Initial stages of Au adsorption processes on Si(111)-(7 × 7) surfaces at ~780°C, a temperature range where the surface structure undergoes successive phase transitions [(7 × 7)–("1 × 1")–(5×2)–("1 × 1")], were observed in situ by reflection electron microscopy. All of the phase transitions are heterogeneous on the surface and start at surface atomic steps. During Au adsorption on Si(111)-(7 × 7), and subsequently on Si(111)-("1 × 1") surface with wide terraces, steps advance toward the step-down direction. At a Au coverage of ~0.3 ML, the 5 × 2 structure nucleates at step edges, and the nuclei expand both to the lower side terraces and to the higher side terraces. At this stage, an effect of current for heating the specimen was noted. From measurements of such movements of the steps and the domain boundaries, the density of Si atoms in the "1 × 1" phase is estimated to be 1.3–1.7 ML at a Au coverage of ~0.3 ML. Au adsorption on Si(111) surfaces with narrow terraces causes bunching of the steps. After nucleation of the 5 × 2 structure, the bunched [Formula: see text] steps become straight along the [Formula: see text] direction, and are transformed into the (335) facet planes at a Au coverage of 0.50 ML. It was found that the (335) facet planes are stabilized by adsorbed Au atoms. Destruction of the (335) facet is noted at a Au coverage of 0.73 ML.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Situ Transmission Electron Microscopy;Springer Handbook of Microscopy;2019

2. Atomic Processes on the Silicon Surface;Advances in Semiconductor Nanostructures;2017

3. Step Bunching on Silicon Surface Under Electromigration;Nanophenomena at Surfaces;2010-11-30

4. Atomic steps on the Si(111) surface during submonolayer gold adsorption;Bulletin of the Russian Academy of Sciences: Physics;2008-02

5. Instability of the distribution of atomic steps on Si(111) upon submonolayer gold adsorption at high temperatures;Journal of Experimental and Theoretical Physics Letters;2005-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3