Affiliation:
1. School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China
2. School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi Province, P. R. China
Abstract
Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M[Formula: see text](C,B)6-type borocarbides. When the content of Mo is 4.0[Formula: see text]wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0[Formula: see text]wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献