Affiliation:
1. Institut de Physique Expérimentale, EPF Lausanne, PHB Ecublens, CH-1015 Lausanne, Switzerland
Abstract
Molecular beam deflection measurements of small iron, cobalt, and nickel clusters show how magnetism develops as the cluster size is increased from several tens to several hundreds of atoms for temperatures from 80 and 1000 K. Cluster magnetization is found to be superparamagnetic for rotationally warm clusters, where it follows the Langevin function. The magnetization of rotationally cold clusters is anomalous: it is strongly reduced and nonlinear with the applied field. For superparamagnetic clusters, the magnetic moments can be determined from the magnetization. We find that ferromagnetism occurs even for the smallest sizes: for clusters with less than about 30 atoms the magnetic moments are atom-like and as the size is increased up to 700 atoms they approach the bulk limit, with oscillations probably caused by surface-induced spin-density waves. The trends are explained in a magnetic shell model. The magnetic properties of iron cluster show anomalies, suggesting that a high moment to low moment crystallographic phase transition in Fe clusters occurs at relatively low temperatures.
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献