Affiliation:
1. Department of Mathematics and Computer Science, St. Petersburg State University, 14th Line V. O., 29, Saint Petersburg 199178, Russia
Abstract
Finite automata that traverse graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of Boolean operations for this model. It is proved that the union of GWA with [Formula: see text] and [Formula: see text] states, with [Formula: see text], operating on graphs with [Formula: see text] labels of edge end-points, is representable by a GWA with [Formula: see text] states, and at least [Formula: see text] states are necessary in the worst case. For the intersection, the upper bound is [Formula: see text] and the lower bound is [Formula: see text]. The upper bound for the complementation is [Formula: see text], and the lower bound is [Formula: see text].
Funder
Russian Science Foundation
Publisher
World Scientific Pub Co Pte Ltd