m-Bonsai: A Practical Compact Dynamic Trie

Author:

Poyias Andreas1,Puglisi Simon J.2,Raman Rajeev1

Affiliation:

1. Department of Informatics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom

2. Helsinki Institute of Information Technology, Department of Computer Science, University of Helsinki, P. O. Box 68, FI-00014, Finland

Abstract

We consider the problem of implementing a space-efficient dynamic trie, with an emphasis on good practical performance. For a trie with [Formula: see text] nodes with an alphabet of size [Formula: see text], the information-theoretic space lower bound is [Formula: see text] bits. The Bonsai data structure is a compact trie proposed by Darragh et al. (Softw. Pract. Exper. 23(3) (1993) 277–291). Its disadvantages include the user having to specify an upper bound [Formula: see text] on the trie size in advance (which cannot be changed easily after initalization), a space usage of [Formula: see text] (which is asymptotically non-optimal for smaller [Formula: see text] or if [Formula: see text]) and a lack of support for deletions. It supports traversal and update operations in [Formula: see text] expected time (based on assumptions about the behaviour of hash functions), where [Formula: see text] and has excellent speed performance in practice. We propose an alternative, m-Bonsai, that addresses the above problems, obtaining a trie that uses [Formula: see text] bits in expectation, and supports traversal and update operations in [Formula: see text] expected time and [Formula: see text] amortized expected time, for any user-specified parameter [Formula: see text] (again based on assumptions about the behaviour of hash functions). We give an implementation of m-Bonsai which uses considerably less memory and is slightly faster than the original Bonsai.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CoCo-trie: Data-aware compression and indexing of strings;Information Systems;2024-02

2. Fast and Simple Compact Hashing via Bucketing;Algorithmica;2022-06-29

3. On Dynamic Bitvector Implementations;2022 Data Compression Conference (DCC);2022-03

4. Compressed String Dictionaries via Data-Aware Subtrie Compaction;String Processing and Information Retrieval;2022

5. Engineering Practical Lempel-Ziv Tries;ACM Journal of Experimental Algorithmics;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3