On the Span of ℓ Distance Coloring of Infinite Hexagonal Grid

Author:

Koley Subhasis1ORCID,Ghosh Sasthi C.2ORCID

Affiliation:

1. Techno India University, EM-4, Sector-V, Salt Lake, Kolkata 700091, WB, India

2. Advanced Computing and Microelectronics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India

Abstract

For a graph [Formula: see text] and [Formula: see text], an [Formula: see text] distance coloring is a coloring [Formula: see text] of [Formula: see text] with [Formula: see text] colors such that [Formula: see text] when [Formula: see text]. Here [Formula: see text] is the distance between [Formula: see text] and [Formula: see text] and is equal to the minimum number of edges that connect [Formula: see text] and [Formula: see text] in [Formula: see text]. The span of [Formula: see text] distance coloring of [Formula: see text], [Formula: see text], is the minimum [Formula: see text] among all [Formula: see text] distance coloring of [Formula: see text]. A class of channel assignment problem in cellular network can be formulated as a distance graph coloring problem in regular grid graphs. The cellular network is often modelled as an infinite hexagonal grid [Formula: see text], and hence determining [Formula: see text] has relevance from practical point of view. Jacko and Jendrol [Discussiones Mathematicae Graph Theory, 2005] determined the exact value of [Formula: see text] for any odd [Formula: see text] and for even [Formula: see text], it is conjectured that [Formula: see text] where [Formula: see text] is an integer, [Formula: see text] and [Formula: see text]. For [Formula: see text], the conjecture has been proved by Ghosh and Koley [[Formula: see text]nd Italian Conference on Theoretical Computer Science, 2021]. In this paper, we prove the conjecture for any even [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3