Quantum and Approximation Algorithms for Maximum Witnesses of Boolean Matrix Products

Author:

Kowaluk Mirosław1ORCID,Lingas Andrzej2ORCID

Affiliation:

1. Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

2. Department of Computer Science, Lund University, Box 118, 22100 Lund, Sweden

Abstract

The problem of finding maximum (or minimum) witnesses of the Boolean product of two Boolean matrices (MW for short) has a number of important applications, in particular the all-pairs lowest common ancestor (LCA) problem in directed acyclic graphs (dags). The best known upper time-bound on the MW problem for [Formula: see text] Boolean matrices of the form [Formula: see text] has not been substantially improved since 2006. In order to obtain faster algorithms for this problem, we study quantum algorithms for MW and approximation algorithms for MW (in the classical computational model). Some of our quantum algorithms are input or output sensitive. Our fastest quantum algorithm for the MW problem, and consequently for the related problems, runs in time [Formula: see text], where [Formula: see text] satisfies the equation [Formula: see text] and [Formula: see text] is the exponent of the multiplication of an [Formula: see text] matrix by an [Formula: see text] matrix. Next, we consider a relaxed version of the MW problem (in the classical model) asking for reporting a witness of bounded rank (the maximum witness has rank 1) for each non-zero entry of the matrix product. First, by adapting the fastest known algorithm for maximum witnesses, we obtain an algorithm for the relaxed problem that reports for each non-zero entry of the product matrix a witness of rank at most [Formula: see text] in time [Formula: see text] Then, by reducing the relaxed problem to the so called [Formula: see text]-witness problem, we provide an algorithm that reports for each non-zero entry [Formula: see text] of the product matrix [Formula: see text] a witness of rank [Formula: see text], where [Formula: see text] is the number of witnesses for [Formula: see text], with high probability. The algorithm runs in [Formula: see text] time, where [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3