Affiliation:
1. Department of Informatics, Kyushu University, Japan
Abstract
Text mining from large scaled data is of great importance in computer science. In this paper, we consider fundamental problems on text mining from compressed strings, i.e., computing a longest repeating substring, longest non-overlapping repeating substring, most frequent substring, and most frequent non-overlapping substring from a given compressed string. Also, we tackle the following novel problem: given a compressed text and compressed pattern, compute the representative of the equivalence class of the pattern w.r.t. the text. We present algorithms that solve the above problems in time polynomial in the size of input compressed strings. The compression scheme we consider is straight line program (SLP) which has exponential compression, and therefore our algorithms are more efficient than any existing algorithms that require decompression of given SLPs.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献