Influence of moving plate velocity on conjugate heat transfer due to the impingement of an inclined slot jet

Author:

Pawar Shashikant1,Patel Devendra Kumar1

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

In this paper, a dimensionless numerical study of the flow-field and heat transfer characteristics of an incompressible turbulent slot jet impinging obliquely over a moving surface of finite thickness is presented. Simulations were performed using [Formula: see text] eddy viscosity turbulence model. The temperature field was solved simultaneously in the solid and the fluid domain. For a fixed impingement distance and a fixed Reynolds number, the impingement angle ([Formula: see text]) and plate velocity ([Formula: see text]) were varied in the range of 30–75 and 0–0.3, respectively. In the results, the length of the potential core depends on the jet inclination, which increases with increase in jet angle. The jet angle and plate velocity have more influence on the uphill side compared to the downhill side. The location of stagnation displaces toward the uphill side as the inclination angle decreases, and the drifting of stagnation point is noted with the variation in plate velocity. The average skin-friction coefficient increases with increase in [Formula: see text] and [Formula: see text], and the influence of [Formula: see text] on the skin-friction coefficient is reduced as [Formula: see text] increases. The maximum Nusselt number ([Formula: see text]) increases with increase in [Formula: see text], and the drifting of [Formula: see text] is observed with increase in plate velocity. It is found that the average Nusselt number increases quickly with increase in plate velocity for lower angles of impingement. The distribution of local heat flux follows the same trend as the local Nusselt number.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3